Corpus GrippeCanadaV3

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions.

Identifieur interne : 000360 ( Main/Exploration ); précédent : 000359; suivant : 000361

H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions.

Auteurs : Danuta M. Skowronski [Canada] ; Flavia S. Moser ; Naveed Z. Janjua ; Bahman Davoudi ; Krista M. English ; Dale Purych ; Martin Petric ; Babak Pourbohloul

Source :

RBID : pubmed:23326561

Descripteurs français

English descriptors

Abstract

Cases of a novel swine-origin influenza A(H3N2) variant (H3N2v) have recently been identified in the US, primarily among children. We estimated potential epidemic attack rates (ARs) based on age-specific estimates of sero-susceptibility and social interactions. A contact network model previously established for the Greater Vancouver Area (GVA), Canada was used to estimate average epidemic (infection) ARs for the emerging H3N2v and comparator viruses (H1N1pdm09 and an extinguished H3N2 seasonal strain) based on typical influenza characteristics, basic reproduction number (R(0)), and effective contacts taking into account age-specific sero-protection rates (SPRs). SPRs were assessed in sera collected from the GVA in 2009 or earlier (pre-H1N1pdm09) and fall 2010 (post-H1N1pdm09, seasonal A/Brisbane/10/2007(H3N2), and H3N2v) by hemagglutination inhibition (HI) assay. SPR was assigned per convention based on proportion with HI antibody titre ≥40 (SPR40). Recognizing that the HI titre ≥40 was established as the 50%sero-protective threshold we also explored for ½SPR40, SPR80 and a blended gradient defined as: ¼SPR20, ½SPR40, ¾SPR80, SPR160. Base case analysis assumed R(0) = 1.40, but we also explored R(0) as high as 1.80. With R(0) = 1.40 and SPR40, simulated ARs were well aligned with field observations for H1N1pdm09 incidence (AR: 32%), sporadic detections without a third epidemic wave post-H1N1pdm09 (negligible AR<0.1%) as well as A/Brisbane/10/2007(H3N2) seasonal strain extinction and antigenic drift replacement (negligible AR<0.1%). Simulated AR for the novel swine-origin H3N2v was 6%, highest in children 6-11years (16%). However, with modification to SPR thresholds per above, H3N2v AR ≥20% became possible. At SPR40, H3N2v AR ≥10%, ≥15% or ≥30%, occur if R(0)≥1.48, ≥1.56 or ≥1.86, respectively. Based on conventional assumptions, the novel swine-origin H3N2v does not currently pose a substantial pandemic threat. If H3N2v epidemics do occur, overall community ARs are unlikely to exceed typical seasonal influenza experience. However risk assessment may change with time and depends crucially upon the validation of epidemiological features of influenza, notably the serologic correlate of protection and R(0).

DOI: 10.1371/journal.pone.0054015
PubMed: 23326561


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions.</title>
<author>
<name sortKey="Skowronski, Danuta M" sort="Skowronski, Danuta M" uniqKey="Skowronski D" first="Danuta M" last="Skowronski">Danuta M. Skowronski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, Canada. danuta.skowronski@bccdc.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moser, Flavia S" sort="Moser, Flavia S" uniqKey="Moser F" first="Flavia S" last="Moser">Flavia S. Moser</name>
</author>
<author>
<name sortKey="Janjua, Naveed Z" sort="Janjua, Naveed Z" uniqKey="Janjua N" first="Naveed Z" last="Janjua">Naveed Z. Janjua</name>
</author>
<author>
<name sortKey="Davoudi, Bahman" sort="Davoudi, Bahman" uniqKey="Davoudi B" first="Bahman" last="Davoudi">Bahman Davoudi</name>
</author>
<author>
<name sortKey="English, Krista M" sort="English, Krista M" uniqKey="English K" first="Krista M" last="English">Krista M. English</name>
</author>
<author>
<name sortKey="Purych, Dale" sort="Purych, Dale" uniqKey="Purych D" first="Dale" last="Purych">Dale Purych</name>
</author>
<author>
<name sortKey="Petric, Martin" sort="Petric, Martin" uniqKey="Petric M" first="Martin" last="Petric">Martin Petric</name>
</author>
<author>
<name sortKey="Pourbohloul, Babak" sort="Pourbohloul, Babak" uniqKey="Pourbohloul B" first="Babak" last="Pourbohloul">Babak Pourbohloul</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23326561</idno>
<idno type="pmid">23326561</idno>
<idno type="doi">10.1371/journal.pone.0054015</idno>
<idno type="wicri:Area/Main/Corpus">000385</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000385</idno>
<idno type="wicri:Area/Main/Curation">000385</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000385</idno>
<idno type="wicri:Area/Main/Exploration">000385</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions.</title>
<author>
<name sortKey="Skowronski, Danuta M" sort="Skowronski, Danuta M" uniqKey="Skowronski D" first="Danuta M" last="Skowronski">Danuta M. Skowronski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, Canada. danuta.skowronski@bccdc.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver</wicri:regionArea>
<wicri:noRegion>Vancouver</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moser, Flavia S" sort="Moser, Flavia S" uniqKey="Moser F" first="Flavia S" last="Moser">Flavia S. Moser</name>
</author>
<author>
<name sortKey="Janjua, Naveed Z" sort="Janjua, Naveed Z" uniqKey="Janjua N" first="Naveed Z" last="Janjua">Naveed Z. Janjua</name>
</author>
<author>
<name sortKey="Davoudi, Bahman" sort="Davoudi, Bahman" uniqKey="Davoudi B" first="Bahman" last="Davoudi">Bahman Davoudi</name>
</author>
<author>
<name sortKey="English, Krista M" sort="English, Krista M" uniqKey="English K" first="Krista M" last="English">Krista M. English</name>
</author>
<author>
<name sortKey="Purych, Dale" sort="Purych, Dale" uniqKey="Purych D" first="Dale" last="Purych">Dale Purych</name>
</author>
<author>
<name sortKey="Petric, Martin" sort="Petric, Martin" uniqKey="Petric M" first="Martin" last="Petric">Martin Petric</name>
</author>
<author>
<name sortKey="Pourbohloul, Babak" sort="Pourbohloul, Babak" uniqKey="Pourbohloul B" first="Babak" last="Pourbohloul">Babak Pourbohloul</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adolescent</term>
<term>Age Factors</term>
<term>Animals</term>
<term>Antibodies, Viral (blood)</term>
<term>Canada</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Epidemics</term>
<term>Hemagglutination Inhibition Tests</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (immunology)</term>
<term>Influenza A Virus, H1N1 Subtype (pathogenicity)</term>
<term>Influenza A Virus, H3N2 Subtype (immunology)</term>
<term>Influenza A Virus, H3N2 Subtype (pathogenicity)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (virology)</term>
<term>Risk Assessment</term>
<term>Serotyping</term>
<term>Swine</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adolescent</term>
<term>Animaux</term>
<term>Anticorps antiviraux (sang)</term>
<term>Canada</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Facteurs de l'âge</term>
<term>Grippe humaine (virologie)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Sous-type H1N1 du virus de la grippe A (immunologie)</term>
<term>Sous-type H1N1 du virus de la grippe A (pathogénicité)</term>
<term>Sous-type H3N2 du virus de la grippe A (immunologie)</term>
<term>Sous-type H3N2 du virus de la grippe A (pathogénicité)</term>
<term>Suidae</term>
<term>Sérotypage</term>
<term>Tests d'inhibition de l'hémagglutination</term>
<term>Épidémies</term>
<term>Évaluation des risques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Antibodies, Viral</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Canada</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A Virus, H3N2 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Sous-type H3N2 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Anticorps antiviraux</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adolescent</term>
<term>Age Factors</term>
<term>Animals</term>
<term>Child</term>
<term>Child, Preschool</term>
<term>Epidemics</term>
<term>Hemagglutination Inhibition Tests</term>
<term>Humans</term>
<term>Risk Assessment</term>
<term>Serotyping</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adolescent</term>
<term>Animaux</term>
<term>Canada</term>
<term>Enfant</term>
<term>Enfant d'âge préscolaire</term>
<term>Facteurs de l'âge</term>
<term>Humains</term>
<term>Suidae</term>
<term>Sérotypage</term>
<term>Tests d'inhibition de l'hémagglutination</term>
<term>Épidémies</term>
<term>Évaluation des risques</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Canada</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cases of a novel swine-origin influenza A(H3N2) variant (H3N2v) have recently been identified in the US, primarily among children. We estimated potential epidemic attack rates (ARs) based on age-specific estimates of sero-susceptibility and social interactions. A contact network model previously established for the Greater Vancouver Area (GVA), Canada was used to estimate average epidemic (infection) ARs for the emerging H3N2v and comparator viruses (H1N1pdm09 and an extinguished H3N2 seasonal strain) based on typical influenza characteristics, basic reproduction number (R(0)), and effective contacts taking into account age-specific sero-protection rates (SPRs). SPRs were assessed in sera collected from the GVA in 2009 or earlier (pre-H1N1pdm09) and fall 2010 (post-H1N1pdm09, seasonal A/Brisbane/10/2007(H3N2), and H3N2v) by hemagglutination inhibition (HI) assay. SPR was assigned per convention based on proportion with HI antibody titre ≥40 (SPR40). Recognizing that the HI titre ≥40 was established as the 50%sero-protective threshold we also explored for ½SPR40, SPR80 and a blended gradient defined as: ¼SPR20, ½SPR40, ¾SPR80, SPR160. Base case analysis assumed R(0) = 1.40, but we also explored R(0) as high as 1.80. With R(0) = 1.40 and SPR40, simulated ARs were well aligned with field observations for H1N1pdm09 incidence (AR: 32%), sporadic detections without a third epidemic wave post-H1N1pdm09 (negligible AR<0.1%) as well as A/Brisbane/10/2007(H3N2) seasonal strain extinction and antigenic drift replacement (negligible AR<0.1%). Simulated AR for the novel swine-origin H3N2v was 6%, highest in children 6-11years (16%). However, with modification to SPR thresholds per above, H3N2v AR ≥20% became possible. At SPR40, H3N2v AR ≥10%, ≥15% or ≥30%, occur if R(0)≥1.48, ≥1.56 or ≥1.86, respectively. Based on conventional assumptions, the novel swine-origin H3N2v does not currently pose a substantial pandemic threat. If H3N2v epidemics do occur, overall community ARs are unlikely to exceed typical seasonal influenza experience. However risk assessment may change with time and depends crucially upon the validation of epidemiological features of influenza, notably the serologic correlate of protection and R(0).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23326561</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>07</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>e54015</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0054015</ELocationID>
<Abstract>
<AbstractText>Cases of a novel swine-origin influenza A(H3N2) variant (H3N2v) have recently been identified in the US, primarily among children. We estimated potential epidemic attack rates (ARs) based on age-specific estimates of sero-susceptibility and social interactions. A contact network model previously established for the Greater Vancouver Area (GVA), Canada was used to estimate average epidemic (infection) ARs for the emerging H3N2v and comparator viruses (H1N1pdm09 and an extinguished H3N2 seasonal strain) based on typical influenza characteristics, basic reproduction number (R(0)), and effective contacts taking into account age-specific sero-protection rates (SPRs). SPRs were assessed in sera collected from the GVA in 2009 or earlier (pre-H1N1pdm09) and fall 2010 (post-H1N1pdm09, seasonal A/Brisbane/10/2007(H3N2), and H3N2v) by hemagglutination inhibition (HI) assay. SPR was assigned per convention based on proportion with HI antibody titre ≥40 (SPR40). Recognizing that the HI titre ≥40 was established as the 50%sero-protective threshold we also explored for ½SPR40, SPR80 and a blended gradient defined as: ¼SPR20, ½SPR40, ¾SPR80, SPR160. Base case analysis assumed R(0) = 1.40, but we also explored R(0) as high as 1.80. With R(0) = 1.40 and SPR40, simulated ARs were well aligned with field observations for H1N1pdm09 incidence (AR: 32%), sporadic detections without a third epidemic wave post-H1N1pdm09 (negligible AR<0.1%) as well as A/Brisbane/10/2007(H3N2) seasonal strain extinction and antigenic drift replacement (negligible AR<0.1%). Simulated AR for the novel swine-origin H3N2v was 6%, highest in children 6-11years (16%). However, with modification to SPR thresholds per above, H3N2v AR ≥20% became possible. At SPR40, H3N2v AR ≥10%, ≥15% or ≥30%, occur if R(0)≥1.48, ≥1.56 or ≥1.86, respectively. Based on conventional assumptions, the novel swine-origin H3N2v does not currently pose a substantial pandemic threat. If H3N2v epidemics do occur, overall community ARs are unlikely to exceed typical seasonal influenza experience. However risk assessment may change with time and depends crucially upon the validation of epidemiological features of influenza, notably the serologic correlate of protection and R(0).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skowronski</LastName>
<ForeName>Danuta M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, Canada. danuta.skowronski@bccdc.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moser</LastName>
<ForeName>Flavia S</ForeName>
<Initials>FS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janjua</LastName>
<ForeName>Naveed Z</ForeName>
<Initials>NZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davoudi</LastName>
<ForeName>Bahman</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>English</LastName>
<ForeName>Krista M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Purych</LastName>
<ForeName>Dale</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Petric</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pourbohloul</LastName>
<ForeName>Babak</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>PTL-97126</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000293" MajorTopicYN="N">Adolescent</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000367" MajorTopicYN="Y">Age Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002170" MajorTopicYN="N" Type="Geographic">Canada</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002648" MajorTopicYN="N">Child</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002675" MajorTopicYN="N">Child, Preschool</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058872" MajorTopicYN="Y">Epidemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006385" MajorTopicYN="N">Hemagglutination Inhibition Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053122" MajorTopicYN="N">Influenza A Virus, H3N2 Subtype</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018570" MajorTopicYN="N">Risk Assessment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012703" MajorTopicYN="N">Serotyping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23326561</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0054015</ArticleId>
<ArticleId IdType="pii">PONE-D-12-21738</ArticleId>
<ArticleId IdType="pmc">PMC3543419</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2010 Apr 30;28(20):3558-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20307592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Infect Dis J. 2011 Dec;30(12):1081-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 2008 Jun;136(6):813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2011 Sep 9;60(35):1213-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Oct;3(10):e387</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(4). pii: 20066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22297136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Health Technol Assess. 2010 Dec;14(55):115-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21208549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2004 Sep 15;292(11):1333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2010 May;199(2):117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20162304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(2):e9360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2010 Feb 9;182(2):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19959592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2009 Jul 16;361(3):279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19564632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2012 Dec 15;206(12):1852-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22872731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol (Basel). 2003;115:63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15088777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2012 Jun 8;61(22):414-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2012 May;18(5):834-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22516540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2011 Dec 1;174(11):1307-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22025354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2010 Feb 4;15(5). pii: 19478</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2010 Nov 23;182(17):1851-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Immunol. 2004 Jan;59(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14723616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(19). pii: 20170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19597152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2012 Dec;18(12):1937-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23171635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2011 Jun;9(6):669-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2011;16(50):20039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22221493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 12;309(5737):1083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2010;15(31). pii: 19633</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20738992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2012 Jan 6;60(51-52):1741-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Nov 24;353(21):2209-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2011 Oct 25;3:RRN1265</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2009 Sep;3(5):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19702583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2006 Jun 7;240(3):400-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16300796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2011 Jan 15;203(2):158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21288814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 2012 Apr 13;61(14):237-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22495226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2011;11:932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22168242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2013 Sep;7(5):872-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23331969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2005 Jan 7;232(1):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Jan 8;289(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21701598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemics. 2012 Mar;4(1):22-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Aug;11(8):1249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e26427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110586</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Davoudi, Bahman" sort="Davoudi, Bahman" uniqKey="Davoudi B" first="Bahman" last="Davoudi">Bahman Davoudi</name>
<name sortKey="English, Krista M" sort="English, Krista M" uniqKey="English K" first="Krista M" last="English">Krista M. English</name>
<name sortKey="Janjua, Naveed Z" sort="Janjua, Naveed Z" uniqKey="Janjua N" first="Naveed Z" last="Janjua">Naveed Z. Janjua</name>
<name sortKey="Moser, Flavia S" sort="Moser, Flavia S" uniqKey="Moser F" first="Flavia S" last="Moser">Flavia S. Moser</name>
<name sortKey="Petric, Martin" sort="Petric, Martin" uniqKey="Petric M" first="Martin" last="Petric">Martin Petric</name>
<name sortKey="Pourbohloul, Babak" sort="Pourbohloul, Babak" uniqKey="Pourbohloul B" first="Babak" last="Pourbohloul">Babak Pourbohloul</name>
<name sortKey="Purych, Dale" sort="Purych, Dale" uniqKey="Purych D" first="Dale" last="Purych">Dale Purych</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Skowronski, Danuta M" sort="Skowronski, Danuta M" uniqKey="Skowronski D" first="Danuta M" last="Skowronski">Danuta M. Skowronski</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/GrippeCanadaV3/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000360 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000360 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    GrippeCanadaV3
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23326561
   |texte=   H3N2v and other influenza epidemic risk based on age-specific estimates of sero-protection and contact network interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23326561" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrippeCanadaV3 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Jul 7 13:36:58 2020. Site generation: Sat Sep 26 07:06:42 2020